Friday 24 November 2017

Movendo Médias Tempo Série Dados Análise


Média móvel Este exemplo ensina como calcular a média móvel de uma série temporal no Excel. Uma média móvel é usada para suavizar irregularidades (picos e vales) para reconhecer facilmente as tendências. 1. Primeiro, vamos dar uma olhada em nossa série de tempo. 2. No separador Dados, clique em Análise de dados. Nota: não é possível encontrar o botão Análise de dados Clique aqui para carregar o suplemento do Analysis ToolPak. 3. Selecione Média móvel e clique em OK. 4. Clique na caixa Intervalo de entrada e selecione o intervalo B2: M2. 5. Clique na caixa Intervalo e escreva 6. 6. Clique na caixa Output Range e seleccione a célula B3. 8. Faça um gráfico destes valores. Explicação: porque definimos o intervalo como 6, a média móvel é a média dos 5 pontos de dados anteriores eo ponto de dados atual. Como resultado, os picos e vales são suavizados. O gráfico mostra uma tendência crescente. O Excel não consegue calcular a média móvel para os primeiros 5 pontos de dados porque não existem pontos de dados anteriores suficientes. 9. Repita os passos 2 a 8 para intervalo 2 e intervalo 4. Conclusão: Quanto maior o intervalo, mais os picos e vales são suavizados. Menor o intervalo, mais perto as médias móveis são aos pontos reais dos dados. Médias de movimentação Médias móveis Com datasets convencionais o valor médio é frequentemente o primeiro, e uma das estatísticas de sumário as mais úteis a calcular. Quando os dados estão na forma de uma série temporal, a média da série é uma medida útil, mas não reflete a natureza dinâmica dos dados. Os valores médios calculados em períodos em curto, anteriores ao período atual ou centrados no período atual, são freqüentemente mais úteis. Como esses valores médios variam ou se movem, à medida que o período atual se move a partir do tempo t 2, t 3, etc., eles são conhecidos como médias móveis (Mas). Uma média móvel simples é (tipicamente) a média não ponderada de k valores anteriores. Uma média móvel exponencialmente ponderada é essencialmente a mesma que uma média móvel simples, mas com contribuições para a média ponderada pela sua proximidade com o tempo atual. Como não existe uma, mas toda uma série de médias móveis para qualquer série, o conjunto de Mas pode ser plotado em gráficos, analisado como uma série e usado na modelagem e previsão. Uma gama de modelos pode ser construída usando médias móveis, e estes são conhecidos como modelos MA. Se tais modelos forem combinados com modelos autorregressivos (AR), os modelos compostos resultantes são conhecidos como modelos ARMA ou ARIMA (o I é para integrado). Médias móveis simples Uma vez que uma série temporal pode ser considerada como um conjunto de valores, t 1,2,3,4, n a média destes valores pode ser calculada. Se assumimos que n é bastante grande, e selecionamos um inteiro k que é muito menor que n. Podemos calcular um conjunto de médias de bloco, ou médias móveis simples (de ordem k): Cada medida representa a média dos valores de dados sobre um intervalo de k observações. Observe que a primeira MA possível de ordem k gt0 é aquela para t k. De forma mais geral, podemos descartar o subíndice extra nas expressões acima e escrever: Isto indica que a média estimada no tempo t é a média simples do valor observado no instante t e os intervalos de tempo k-1 anteriores. Se forem aplicados pesos que diminuam a contribuição de observações que estão mais distantes no tempo, a média móvel é dita ser suavizada exponencialmente. As médias móveis são frequentemente utilizadas como uma forma de previsão, pelo que o valor estimado para uma série no tempo t 1, S t 1. É tomado como o MA para o período até e incluindo o tempo t. por exemplo. A estimativa de hoje é baseada em uma média de valores anteriores registrados até e inclusive ontem (para dados diários). As médias móveis simples podem ser vistas como uma forma de suavização. No exemplo ilustrado abaixo, o conjunto de dados sobre poluição atmosférica mostrado na introdução deste tópico foi aumentado por uma linha de média móvel de 7 dias, mostrada aqui em vermelho. Como pode ser visto, a linha de MA suaviza os picos e depressões nos dados e pode ser muito útil na identificação de tendências. A fórmula de cálculo de referência padrão significa que os primeiros pontos de dados k-1 não têm valor de MA, mas depois disso os cálculos se estendem até o ponto de dados final da série. Uma razão para calcular médias móveis simples da maneira descrita é que ela permite que os valores sejam calculados para todos os intervalos de tempo desde o tempo tk até o presente, e Como uma nova medição é obtida para o tempo t 1, o MA para o tempo t 1 pode ser adicionado ao conjunto já calculado. Isso fornece um procedimento simples para conjuntos de dados dinâmicos. No entanto, existem alguns problemas com esta abordagem. É razoável argumentar que o valor médio nos últimos 3 períodos, digamos, deve ser localizado no tempo t -1, não no tempo t. E para um MA sobre um número par de períodos, talvez ele deve ser localizado no ponto médio entre dois intervalos de tempo. Uma solução para este problema é usar cálculos centralizados MA, em que o MA no tempo t é a média de um conjunto simétrico de valores em torno de t. Apesar de seus méritos óbvios, esta abordagem não é geralmente usada porque exige que os dados estejam disponíveis para eventos futuros, o que pode não ser o caso. Em casos onde a análise é inteiramente de uma série existente, o uso de Mas centralizado pode ser preferível. As médias móveis simples podem ser consideradas como uma forma de suavização, removendo alguns componentes de alta freqüência de uma série de tempo e destacando (mas não removendo) as tendências de forma semelhante à noção geral de filtragem digital. De fato, as médias móveis são uma forma de filtro linear. É possível aplicar um cálculo da média móvel a uma série que já tenha sido suavizada, isto é, suavizar ou filtrar uma série já suavizada. Por exemplo, com uma média móvel de ordem 2, podemos considerá-la como sendo calculada usando pesos, então a MA em x 2 0,5 x 1 0,5 x 2. Da mesma forma, a MA em x 3 0,5 x 2 0,5 x 3. Se nós Aplicar um segundo nível de suavização ou filtragem, temos 0,5 x 2 0,5 x 3 0,5 (0,5 x 1 0,5 x 2) 0,5 (0,5 x 2 0,5 x 3) 0,25 x 1 0,5 x 2 0,25 x 3 ou seja, a filtragem de 2 estádios Processo (ou convolução) produziu uma média móvel simétrica ponderada variável, com pesos. Várias circunvoluções podem produzir médias móveis ponderadas bastante complexas, algumas das quais foram encontradas de uso particular em campos especializados, como nos cálculos de seguros de vida. As médias móveis podem ser usadas para remover efeitos periódicos se computadas com o comprimento da periodicidade como um conhecido. Por exemplo, com os dados mensais as variações sazonais podem frequentemente ser removidas (se este for o objetivo) aplicando uma média móvel simétrica de 12 meses com todos os meses ponderados igualmente, exceto o primeiro eo último que são ponderados por 12. Isto é porque haverá Ser de 13 meses no modelo simétrico (tempo atual, t. - 6 meses). O total é dividido por 12. Procedimentos semelhantes podem ser adotados para qualquer periodicidade bem definida. Médias móveis exponencialmente ponderadas (EWMA) Com a fórmula da média móvel simples: todas as observações são igualmente ponderadas. Se chamássemos esses pesos iguais, alfa t. Cada um dos k pesos seria igual a 1 k. Então a soma dos pesos seria 1, ea fórmula seria: Já vimos que múltiplas aplicações desse processo resultam em pesos variando. Com médias móveis ponderadas exponencialmente, a contribuição para o valor médio das observações que são mais removidas no tempo é deliberada reduzida, enfatizando os eventos mais recentes (locais). Essencialmente um parâmetro de suavização, 0lt alfa lt1, é introduzido, ea fórmula revisada para: Uma versão simétrica desta fórmula seria da forma: Se os pesos no modelo simétrico são selecionados como os termos dos termos da expansão binomial, (1212) 2q. Eles somarão a 1, e quando q se tornar grande, aproximar-se-á da distribuição Normal. Esta é uma forma de ponderação do kernel, com o Binomial agindo como a função do kernel. A convolução de dois estágios descrita na subseção anterior é precisamente esta disposição, com q 1, produzindo os pesos. Em suavização exponencial é necessário usar um conjunto de pesos que somam 1 e que reduzem em tamanho geometricamente. Os pesos usados ​​são tipicamente da forma: Para mostrar que esses pesos somam 1, considere a expansão de 1 como uma série. Podemos escrever e expandir a expressão entre parênteses usando a fórmula binomial (1-x) p. Onde x (1-) e p -1, o que dá: Isso então fornece uma forma de média móvel ponderada da forma: Esta soma pode ser escrita como uma relação de recorrência: o que simplifica muito a computação e evita o problema de que o regime de ponderação Deve ser estritamente infinito para os pesos a somar a 1 (para pequenos valores de alfa, isso normalmente não é o caso). A notação utilizada por diferentes autores varia. Alguns usam a letra S para indicar que a fórmula é essencialmente uma variável suavizada e escrevem: enquanto a literatura da teoria de controle usa freqüentemente Z em vez de S para os valores exponencialmente ponderados ou suavizados (ver, por exemplo, Lucas e Saccucci, 1990, LUC1 , Eo site do NIST para mais detalhes e exemplos trabalhados). As fórmulas citadas acima derivam do trabalho de Roberts (1959, ROB1), mas Hunter (1986, HUN1) usa uma expressão da forma: que pode ser mais apropriada para uso em alguns procedimentos de controle. Com alfa 1, a estimativa média é simplesmente o seu valor medido (ou o valor do item de dados anterior). Com 0,5 a estimativa é a média móvel simples das medições atuais e anteriores. Nos modelos de previsão, o valor, S t. É freqüentemente usado como estimativa ou valor de previsão para o próximo período de tempo, ou seja, como a estimativa para x no tempo t 1. Assim, temos: Isto mostra que o valor da previsão no tempo t 1 é uma combinação da média móvel exponencialmente ponderada anterior Mais um componente que representa o erro de previsão ponderado, epsilon. No tempo t. Supondo que uma série temporal é dada e uma previsão é necessária, um valor para alfa é necessário. Isto pode ser estimado a partir dos dados existentes, avaliando a soma dos erros de predição quadrados obtidos com valores variáveis ​​de alfa para cada t 2,3. Definindo a primeira estimativa como o primeiro valor de dados observado, x 1. Em aplicações de controle, o valor de alfa é importante na medida em que é usado na determinação dos limites de controle superior e inferior, e afeta o comprimento médio de execução (ARL) esperado Antes que esses limites de controle sejam quebrados (sob o pressuposto de que as séries temporais representam um conjunto de variáveis ​​independentes, aleatoriamente distribuídas, com variância comum). Nestas circunstâncias, a variância da estatística de controlo é (Lucas e Saccucci, 1990): Os limites de controlo são usualmente definidos como múltiplos fixos desta variância assintótica, e. - 3 vezes o desvio padrão. Se alfa 0,25, por exemplo, e os dados sendo monitorados forem assumidos como tendo uma distribuição Normal, N (0,1), quando em controle, os limites de controle serão - 1,134 e o processo atingirá um ou outro limite em 500 passos na média. Lucas e Saccucci (1990 LUC1) derivam as ARLs para uma ampla gama de valores alfa e sob várias suposições usando procedimentos de Cadeia de Markov. Eles tabulam os resultados, incluindo o fornecimento de ARLs quando a média do processo de controle foi deslocada por algum múltiplo do desvio padrão. Por exemplo, com um deslocamento 0,5 com alfa 0,25 o ARL é menos de 50 etapas de tempo. As abordagens descritas acima são conhecidas como suavização exponencial única. Uma vez que os procedimentos são aplicados uma vez à série temporal e, em seguida, análises ou processos de controlo são realizados no conjunto de dados suavizado resultante. Se o conjunto de dados incluir uma tendência e / ou componentes sazonais, a suavização exponencial de dois ou três estágios pode ser aplicada como um meio de remover (explicitamente modelar) esses efeitos (veja a seção sobre Previsão abaixo eo exemplo trabalhado pelo NIST). CHA1 Chatfield C (1975) A Análise da Série de Tempos: Teoria e Prática. Chapman e Hall, Londres HUN1 Hunter J S (1986) A média móvel exponencialmente ponderada. J of Quality Technology, 18, 203-210 LUC1 Lucas J M, Saccucci M S (1990) Esquemas de controlo da média móvel ponderada exponencialmente: propriedades e melhoramentos. Technometrics, 32 (1), 1-12 ROB1 Roberts S W (1959) Testes de gráficos de controle baseados em médias móveis geométricas. Technometrics, 1, 239-250 Os dados suaves removem a variação aleatória e mostram as tendências e os componentes cíclicos Inerente na coleta de dados ao longo do tempo é alguma forma de variação aleatória. Existem métodos para reduzir o cancelamento do efeito devido a variação aleatória. Uma técnica freqüentemente usada na indústria é suavizar. Essa técnica, quando corretamente aplicada, revela mais claramente a tendência subjacente, os componentes sazonais e cíclicos. Existem dois grupos distintos de métodos de alisamento Métodos de média Métodos de suavização exponencial Tomar médias é a maneira mais simples de suavizar os dados Vamos primeiro investigar alguns métodos de média, como a média simples de todos os dados passados. Um gerente de um armazém quer saber o quanto um fornecedor típico oferece em unidades de 1000 dólares. Heshe toma uma amostra de 12 fornecedores, aleatoriamente, obtendo os seguintes resultados: A média computada ou média dos dados 10. O gerente decide usar isto como a estimativa para despesa de um fornecedor típico. Esta é uma boa ou má estimativa O erro quadrático médio é uma forma de julgar o quão bom é um modelo Vamos calcular o erro quadrático médio. O valor verdadeiro do erro gasto menos o valor estimado. O erro ao quadrado é o erro acima, ao quadrado. O SSE é a soma dos erros quadrados. O MSE é a média dos erros quadrados. Resultados da MSE por exemplo Os resultados são: Erro e esquadrado Erros A estimativa 10 A pergunta surge: podemos usar a média para prever a renda se suspeitarmos de uma tendência? Um olhar para o gráfico abaixo mostra claramente que não devemos fazer isso. A média pondera todas as observações passadas igualmente Em resumo, afirmamos que A média simples ou média de todas as observações passadas é apenas uma estimativa útil para previsão quando não há tendências. Se houver tendências, use estimativas diferentes que levem em conta a tendência. A média pesa todas as observações passadas igualmente. Por exemplo, a média dos valores 3, 4, 5 é 4. Sabemos, é claro, que uma média é calculada adicionando todos os valores e dividindo a soma pelo número de valores. Outra maneira de calcular a média é adicionando cada valor dividido pelo número de valores, ou 33 43 53 1 1.3333 1.6667 4. O multiplicador 13 é chamado de peso. Em geral: barra fração soma esquerda (fratura direita) x1 esquerda (fratura direita) x2,. ,, Esquerda (frac direito) xn. Os modelos de séries temporais conhecidos como modelos ARIMA podem incluir termos auto-regressivos e / ou termos de média móvel. Na Semana 1, aprendemos um termo autorregressivo em um modelo de séries temporais para a variável x t é um valor retardado de x t. Por exemplo, um termo autorregressivo de atraso 1 é x t-1 (multiplicado por um coeficiente). Esta lição define termos de média móvel. Um termo de média móvel em um modelo de séries temporais é um erro passado (multiplicado por um coeficiente). Vamos (wt desviar N (0, sigma2w)), significando que os w t são identicamente, distribuídos independentemente, cada um com uma distribuição normal com média 0 e a mesma variância. O modelo de média móvel de ordem 1, denotado por MA (1) é (xt mu wt theta1w) O modelo de média móvel de 2ª ordem, denotado por MA (2) é (xt mu wt theta1w theta2w) , Denotado por MA (q) é (xt mu wt theta1w theta2w pontos thetaqw) Nota. Muitos livros didáticos e programas de software definem o modelo com sinais negativos antes dos termos. Isso não altera as propriedades teóricas gerais do modelo, embora ele inverta os sinais algébricos de valores de coeficientes estimados e de termos (não-quadrados) nas fórmulas para ACFs e variâncias. Você precisa verificar seu software para verificar se sinais negativos ou positivos foram usados ​​para escrever corretamente o modelo estimado. R usa sinais positivos em seu modelo subjacente, como fazemos aqui. Propriedades Teóricas de uma Série de Tempo com um Modelo MA (1) Observe que o único valor não nulo na ACF teórica é para o atraso 1. Todas as outras autocorrelações são 0. Assim, uma ACF de amostra com uma autocorrelação significativa apenas no intervalo 1 é um indicador de um possível modelo MA (1). Para os estudantes interessados, provas destas propriedades são um apêndice a este folheto. Exemplo 1 Suponha que um modelo MA (1) seja x t 10 w t .7 w t-1. Onde (wt overset N (0,1)). Assim, o coeficiente 1 0,7. O ACF teórico é dado por Um gráfico deste ACF segue. O gráfico apenas mostrado é o ACF teórico para um MA (1) com 1 0,7. Na prática, uma amostra normalmente não proporciona um padrão tão claro. Usando R, simulamos n 100 valores de amostra usando o modelo x t 10 w t .7 w t-1 onde w t iid N (0,1). Para esta simulação, segue-se um gráfico de séries temporais dos dados da amostra. Não podemos dizer muito desse enredo. A ACF de amostra para os dados simulados segue. Observamos que a amostra ACF não corresponde ao padrão teórico do MA subjacente (1), ou seja, que todas as autocorrelações para os atrasos de 1 serão 0 Uma amostra diferente teria uma ACF de amostra ligeiramente diferente mostrada abaixo, mas provavelmente teria as mesmas características gerais. Propriedades teóricas de uma série temporal com um modelo MA (2) Para o modelo MA (2), as propriedades teóricas são as seguintes: Note que os únicos valores não nulos na ACF teórica são para os retornos 1 e 2. As autocorrelações para atrasos maiores são 0 . Assim, uma ACF de amostra com autocorrelações significativas nos intervalos 1 e 2, mas autocorrelações não significativas para atrasos maiores indica um possível modelo MA (2). Iid N (0,1). Os coeficientes são 1 0,5 e 2 0,3. Como este é um MA (2), o ACF teórico terá valores não nulos apenas nos intervalos 1 e 2. Os valores das duas autocorrelações não nulas são: Um gráfico do ACF teórico segue. Como quase sempre é o caso, dados de exemplo não vai se comportar tão perfeitamente como a teoria. Foram simulados n 150 valores de amostra para o modelo x t 10 w t .5 w t-1 .3 w t-2. Onde w t iid N (0,1). O gráfico de série de tempo dos dados segue. Como com o gráfico de série de tempo para os dados de amostra de MA (1), você não pode dizer muito dele. A ACF de amostra para os dados simulados segue. O padrão é típico para situações em que um modelo MA (2) pode ser útil. Existem dois picos estatisticamente significativos nos intervalos 1 e 2, seguidos por valores não significativos para outros desfasamentos. Note que devido ao erro de amostragem, a ACF da amostra não corresponde exactamente ao padrão teórico. ACF para Modelos Gerais MA (q) Uma propriedade dos modelos MA (q) em geral é que existem autocorrelações não nulas para os primeiros q lags e autocorrelações 0 para todos os retornos gt q. Não-unicidade de conexão entre os valores de 1 e (rho1) no modelo MA (1). No modelo MA (1), para qualquer valor de 1. O recíproco 1 1 dá o mesmo valor para Como exemplo, use 0,5 para 1. E então use 1 (0,5) 2 para 1. Você obterá (rho1) 0,4 em ambas as instâncias. Para satisfazer uma restrição teórica chamada invertibilidade. Restringimos modelos MA (1) para ter valores com valor absoluto menor que 1. No exemplo dado, 1 0,5 será um valor de parâmetro permitido, enquanto 1 10,5 2 não. Invertibilidade de modelos MA Um modelo MA é dito ser inversível se for algébrica equivalente a um modelo de ordem infinita convergente. Por convergência, queremos dizer que os coeficientes de RA diminuem para 0 à medida que avançamos no tempo. Invertibilidade é uma restrição programada em séries temporais de software utilizado para estimar os coeficientes de modelos com MA termos. Não é algo que verificamos na análise de dados. Informações adicionais sobre a restrição de invertibilidade para modelos MA (1) são fornecidas no apêndice. Teoria Avançada Nota. Para um modelo MA (q) com um ACF especificado, existe apenas um modelo invertible. A condição necessária para a invertibilidade é que os coeficientes têm valores tais que a equação 1- 1 y-. - q y q 0 tem soluções para y que caem fora do círculo unitário. Código R para os Exemplos No Exemplo 1, traçamos o ACF teórico do modelo x t 10w t. 7w t-1. E depois simularam n 150 valores a partir deste modelo e traçaram a amostra de séries temporais ea amostra ACF para os dados simulados. Os comandos R utilizados para traçar o ACF teórico foram: acfma1ARMAacf (mac (0.7), lag. max10) 10 lags de ACF para MA (1) com theta1 0.7 lags0: 10 cria uma variável chamada lags que varia de 0 a 10. plot (Lags, acfma1, xlimc (1,10), ylabr, typeh, ACF principal para MA (1) com theta1 0,7) abline (h0) adiciona um eixo horizontal ao gráfico O primeiro comando determina o ACF e o armazena em um objeto Chamado acfma1 (nossa escolha de nome). O comando de plotagem (o terceiro comando) traça defasagens em relação aos valores de ACF para os retornos de 1 a 10. O parâmetro ylab marca o eixo y eo parâmetro principal coloca um título no gráfico. Para ver os valores numéricos do ACF basta usar o comando acfma1. A simulação e as parcelas foram feitas com os seguintes comandos. Xcarima. sim (n150, lista (mac (0.7))) Simula n 150 valores de MA (1) xxc10 adiciona 10 para fazer a média 10. Padrões de simulação significam 0. plot (x, typeb, mainSimulated MA (1) data) Acf (x, xlimc (1,10), mainACF para dados de amostras simulados) No Exemplo 2, traçamos o ACF teórico do modelo xt 10 wt. 5 w t-1 .3 w t-2. E depois simularam n 150 valores a partir deste modelo e traçaram a amostra de séries temporais ea amostra ACF para os dados simulados. Os comandos R utilizados foram acfma2ARMAacf (mac (0,5,0,3), lag. max10) acfma2 lags0: 10 parcela (lags, acfma2, xlimc (1,10), ylabr, tipoh, ACF principal para MA (2) com theta1 0,5, (X, typeb, main Simulado MA (2) Series) acf (x, xlimc (1,10), x2, MainACF para dados simulados de MA (2) Apêndice: Prova de Propriedades de MA (1) Para estudantes interessados, aqui estão as provas para propriedades teóricas do modelo MA (1). Quando h 1, a expressão anterior 1 w 2. Para qualquer h 2, a expressão anterior 0 (x) é a expressão anterior x (x) A razão é que, por definição de independência do wt. E (w k w j) 0 para qualquer k j. Além disso, porque w t tem média 0, E (w j w j) E (w j 2) w 2. Para uma série de tempo, aplique este resultado para obter o ACF fornecido acima. Um modelo MA reversível é aquele que pode ser escrito como um modelo de ordem infinita AR que converge de modo que os coeficientes AR convergem para 0 à medida que nos movemos infinitamente para trás no tempo. Bem demonstrar invertibilidade para o modelo MA (1). Em seguida, substitui-se a relação (2) para wt-1 na equação (1) (3) (zt wt theta1 (z-theta1w) wt theta1z-theta2w) No tempo t-2. A equação (2) torna-se Então substituimos a relação (4) para wt-2 na equação (3) (zt wt theta1 z - theta21w wt theta1z - theta21 (z - theta1w) wt theta1z-theta12z theta31w) Se continuássemos Infinitamente), obteríamos o modelo AR de ordem infinita (zt wt theta1 z - theta21z theta31z - theta41z pontos) Observe, no entanto, que se 1 1, os coeficientes multiplicando os desfasamentos de z aumentarão (infinitamente) Tempo. Para evitar isso, precisamos de 1 lt1. Esta é a condição para um modelo MA (1) invertible. Infinite Order MA model Na semana 3, bem ver que um modelo AR (1) pode ser convertido em um modelo de ordem infinita MA: (xt - mu wt phi1w phi21w pontos phik1 w dots sum phij1w) Esta soma de termos de ruído branco passado é conhecido Como a representação causal de um AR (1). Em outras palavras, x t é um tipo especial de MA com um número infinito de termos voltando no tempo. Isso é chamado de ordem infinita MA ou MA (). Uma ordem finita MA é uma ordem infinita AR e qualquer ordem finita AR é uma ordem infinita MA. Lembre-se na Semana 1, observamos que um requisito para um AR estacionário (1) é que 1 lt1. Vamos calcular o Var (x t) usando a representação causal. Esta última etapa usa um fato básico sobre séries geométricas que requer (phi1lt1) caso contrário, a série diverge. Navegação

No comments:

Post a Comment